Hybrid curves and their moduli spaces

Noema Nicolussi

TU Graz

joint work with O. Amini (École polytechnique)

Topology and arithmetic on the moduli space of curves

16th May 2024

Hybrid curves

A hybrid curve C consists of

- a finite graph $G = (V, E)$
- for each vertex v: a compact **Riemann surface** C_v
- on each $\mathcal{C}_{\pmb{\nu}},$ $\pmb{\text{attachment points}}\ p^e_{\pmb{\nu}},\ e\sim \pmb{\nu},$ for interval edges
- an ordered partition $\pi = (\pi_1, \ldots, \pi_r)$ of the edge set E
- an **edge length function** $\ell \colon E \to (0,\infty)$ (with $\sum_{e \in \pi_j} \ell(e) = 1 \, \forall j)$

Hybrid curve $=$ algebraic curve $+$ tropical curve

\mathscr{M}_{g} ... Deligne–Mumford compactification of \mathscr{M}_{g}

Let X_S be an **interesting object** associated to Riemann surfaces $S \in \mathcal{M}_{g}$ (e.g., invariant, metric on S, solution to differential equation on S , ...)

Question

Suppose $S \in \mathcal{M}_{g}$ converges to a stable Riemann surface $S_{\infty} \in \mathcal{M}_{g} \setminus \mathcal{M}_{g}$.

What happens to X_{S} ?

Ideally, one can extend X_S continuously to \mathcal{M}_{g} , i.e.

(i) define an analogous object $X_{S_{\infty}}$ on stable Riemann surfaces S_{∞} (*ii*) prove that $X_S \to X_{S_{\infty}}$ as $S \to S_{\infty}$

Sequences approaching a boundary point in \mathcal{M}_g

Certain interesting objects X_S can't be extended continuously to $\bar{\mathcal{M}}_{g}$, since their limit depends on the "way of approaching S_{∞} "!

Canonical (a.k.a. Arakelov–Bergman) measure

 Ω ... space of **holomorphic 1-forms** ω on S, equipped with **inner product**

$$
\langle \omega, \eta \rangle_{\mathcal{S}} = \frac{i}{2} \int_{\mathcal{S}} \omega \wedge \overline{\eta}, \qquad \omega, \eta \in \Omega.
$$

Definition

Fix an ON-basis $(\omega_k)_k$ of Ω . The **canonical measure** μ_{can} on S is

$$
\mu_S := \frac{i}{2} \sum_{k=1}^g \omega_k \wedge \overline{\omega_k}.
$$

Relationship to the polarized Jacobian

 μ_S is the Riemannian measure of the **canonical metric** φ_S on S:

- $\bullet \langle \cdot, \cdot \rangle_S$ induces a metric φ on Jacobian Jac(S) = $\Omega^* / H_1(S, \mathbb{Z})$
- $\bullet \varphi_S$ is the pull-back of φ via Abel–Jacobi map

$$
AJ\colon S\hookrightarrow \text{Jac}(S).
$$

The canonical measure μ s gives rise to other interesting objects:

• E.g., the Arakelov Green function $g_S : S \times S \to \mathbb{R}$ is the solution to the distributional Poisson equations

$$
\frac{1}{\pi i}\partial_z\partial_{\bar{z}}g_S(x,\cdot)=\mu_S-g\cdot\delta_x,\qquad \int_S g_S(x,y)\,d\mu_S(y)=0,\qquad x\in S.
$$

E.g., interesting invariants of a Riemann surface δ-invariant: Faltings, Calculus on arithmetic surfaces, Ann. Math. (1984)

Many authors studied μ_S and related objects on degenerating RS's! However, they are examples of objects X_S , which cannot be extended continuously to $\overline{\mathcal{M}}_{g}$!

Let S_{∞} be a stable Riemann surface with graph $G = (V, E)$.

Degenerating Riemann surfaces

Constructing a "larger" compactifiation

Plan: find other compactification of $\mathcal{M}_g \Rightarrow$ moduli space of hybrid curves |

To each hybrid curve C, one assigns a stable Riemann surface $S_{\infty}(\mathcal{C})$:

There are infinitely many hybrid curves for each stable RS $S_{\infty} \in \overline{\mathcal{M}}_{\sigma} \setminus \mathcal{M}_{\sigma}!$

Idea of construction:

"Replace each stable Riemann surface $S_\infty \in \bar{\mathscr{M}}_\sigma \setminus \mathscr{M}_\sigma$ by its infinitely many hybrid curves"

Definition

Let C be a hybrid curve with: underlying stable RS $S_{\infty}(\mathcal{C})$; ℓ edge length function; $\pi = (\pi_1, \ldots, \pi_r)$ ordered partition;

A sequence $(S_n)_n \subset \mathcal{M}_{\mathcal{G}}$ converges to C if, as $n \to \infty$,

- (i) $(S_n)_n$ converges to $S_\infty(\mathcal{C})$ in $\overline{\mathcal{M}}_{g}$
- (ii) cycles for edges in π_j shrink "infinitely faster" than cycles of π_{j+1} ,
- (iii) the "relative shrinking speed" of cycles for edges in the same set π_j is captured by the edge lengths.
	- (ii) More precisely: for all sets π_i in $\pi = (\pi_1, \ldots, \pi_r)$:

$$
\tfrac{|\log |z_e(S_n)||}{|\log |z_{e'}(S_n)||} \to \infty \qquad e \in \pi_j, e' \in \pi_{j+1}.
$$

(iii) More precisely: for all sets π_i in $\pi = (\pi_1, \ldots, \pi_r)$:

$$
\frac{|\log |z_e(S_n)||}{|\log |z_{e'}(S_n)||} \to \frac{\ell(e)}{\ell(e')}, \quad \text{for all } e, e' \in \pi_j.
$$

Theorem (Amini–N; 2021)

The moduli space $\mathscr{M}_{g}^{\scriptscriptstyle\mathsf{hyb}}$ of hybrid curves of genus g $\boldsymbol{compactifies}$ \mathscr{M}_{g} . $\mathscr{M}^{\scriptscriptstyle\mathrm{hyb}}_\mathcal{g}$ refines the DM–compactification $\mathscr{\bar{M}}_\mathcal{g}$ in the sense that

$$
\mathscr{M}_g^{\text{\tiny{hyb}}} \to \overline{\mathscr{M}}_g, \qquad \mathcal{C} \mapsto \mathsf{S}_\infty(\mathcal{C}),
$$

is a continuous map.

Q: Understand objects X_S on degenerating Riemann surfaces S ?

Strategy:

(i) define a suitable object X_C on **hybrid curves** C

 (ii) prove that, as $S\to {\cal C}$ in $\mathscr{M}_{\mathbf{\mathcal{g}}}^{\scriptscriptstyle{hyb}}$, one can $\bf{describe}$ $X_{\cal S}$ in terms of $X_{\cal C}$

We did this for a couple of interesting objects X_{S} .

Definition

A metric graph $G = (V, E, \ell)$ is a (finite) graph $G = (V, E)$ together with an edge length function $\ell : E \to (0, +\infty)$.

Canonical measure on metric graphs (Zhang; Invent. Math.,'92)

Let $\mathcal{G} = (V, E, \ell)$ be a metric graph. Fix an orientation on the edge set E. A harmonic one-form on G is a map $\omega: E \to \mathbb{R}$ satisfying

$$
\sum_{\text{incoming edges at } v} \omega(e) = \sum_{\text{outgoing edges at } v} \omega(e), \qquad v \in V.
$$

The ${\sf space\ of\ harmonic\ one}$ -forms $H^1(\mathcal{G})$ has the inner product

$$
\langle \omega, \eta \rangle_{\mathcal{G}} = \sum_{e \in E} \ell(e) \, \omega(e) \eta(e), \qquad \omega, \eta \in H^1(\mathcal{G}).
$$

The **canonical measure** on \mathcal{G} is the edgewise weighted Lebesgue measure

$$
\mu_{\mathcal{G}} := \sum_{\mathsf{e}\in \mathsf{E}} \mu_{\mathsf{e}} \cdot \lambda_{\mathsf{e}}
$$

where λ_e is the Lebesgue measure on the interval edge $e = [0, \ell(e)]$ and

$$
\mu_e = \tfrac{1}{\ell(e)} \sum_k \omega_k(e)^2, \quad \text{ with } (\omega_k)_k \text{ an ON-basis of } H^1(\mathcal{G}).
$$

Definition

For $j = 1, \ldots, r$, the j-th graded minor of C is the metric graph Γ_i with edge set π_j and length function $\ell|_{\pi_j}$ obtained by: $(*)$ contracting all Riemann surface components C_{ν} to points $(*)$ removing all intervals for edges in $\pi_1\cup\pi_2\cup\cdots\cup\pi_{i-1}$ (*) contracting all intervals for edges in $\pi_{j+1} \cup \pi_{j+2} \cup \cdots \cup \pi_r$

Definition

Let C be a hybrid curve. The **canonical measure** on C is

$$
\mu_{\mathcal{C}} := \sum_{v \in V} \mu_{\mathsf{C}_v} + \sum_{j=1}^r \mu_{\mathsf{F}^j}.
$$

 $(\mathsf{C}_\mathsf{v}{}'\mathsf{s}...$ Riemann surface components of $\mathcal{C};$ $\mathsf{\Gamma}_1,\ldots \mathsf{\Gamma}_r...$ graded minors)

Theorem (Amini–N., 2021)

Let $(S_n)_n \subset \mathcal{M}_{g}$ be a sequence of Riemann surfaces and C a hybrid curve.

If $S_n \to \mathcal{C}$, then $\mu_{S_n} \to \mu_{\mathcal{C}}$ (in a weak sense).

Altogether, "**canonical measures vary continuously**" over $\mathscr{M}_{\mathbf{\mathcal{g}}}^{\scriptscriptstyle{hyb}}.$

Canonical metric on degenerating Riemann surfaces

 μ s is the measure associated to the **canonical metric** φ s on S If S converges to a hybrid curve, φ_S exhibits a **multi-scale degeneration**:

Here $L_j = \sum_{e \in \pi_j} |\log |t_e||$ and, in particular, $L_1 \gg L_2 \gg ... \gg L$ r Note: this allows to "see the graded minors"!

Another perspective on hybrid curves

Actually, one should imagine a hybrid curve as a "multi-scale object", with pieces Γ_1 , Γ_2 , ..., Γ_r and $\bigsqcup_{\nu} C_{\nu}$:

- first graded minor $\Gamma_1 \rightarrow$ "dominant scale"
- **•** second graded minor $\Gamma_2 \rightarrow$ "2nd dominant scale"
- \bullet ...
- Riemann surfaces $\bigsqcup_v C_v \to \text{``constant order scale''}$

Let $S \in \mathcal{M}_{g}$ and ν_{S} a measure ν_{S} on S. Consider the **Poisson equation** $\Delta_S f = \nu_S, \qquad \Delta_S := \frac{1}{\pi}$ $\frac{1}{\pi i} \partial_z \partial_{\bar{z}}.$ **Q:** What happens to the **solution** f_s , when S degenerates?

Definition

C hybrid curve with graded minors $\Gamma_1, \ldots, \Gamma_r$ and RSs C_v , $v \in V$: A **hybrid function** on $\mathcal C$ is a $\textnormal{\textbf{tuple}}\; \textnormal{\textbf{f}}=(f_1,\ldots,f_r,f_{\mathbb C}),$ where

- for each $j=1,\ldots,r\colon f_j\colon \mathsf{\Gamma}^j\to\mathbb{C}$ is a function on $\mathsf{\Gamma}^j$
- $f_{\mathbb{C}} \colon \bigsqcup_{\mathsf{v}} C_{\mathsf{v}} \to \mathbb{C}$ is a function on $\bigsqcup_{\mathsf{v}} C_{\mathsf{v}}$

We "mix Laplacians on Riemann surfaces / graphs" to define a Laplacian $\Delta_{\mathcal{C}}(\mathbf{f}) \in \{\nu | \nu \text{ Borel measure on } \mathcal{C}\}.$

E.g., for $r = 1$ (the trivial ordered partition $\pi = (E)$):

$$
\Delta_{\mathcal{C}}(f_1,f_{\mathbb{C}}):=\sum_{e\in E}-(f_1|_e)''\lambda_e+\sum_{v\in C_v}\Delta_{C_v}(f_{\mathbb{C}})|_{C_v}+\sum_{e\sim v}\partial_e f_1(v)\delta_{\rho_v^e}.
$$

(Here: p_{v}^{e} , $e \sim v$ are the "attachment points" of intervals on $C_{v})$

Theorem (Amini–N., 2022)

Let $S \in \mathcal{M}_{g}$ and $\Delta_{S}(f_{S}) = \nu_{S}$ a Poisson equation with solution f_{S} . Let C be a hybrid curve and $\Delta_{\mathcal{C}}({\bf f}) = \nu_{\mathcal{C}}$ a Poisson equation on C with solution $\mathbf{f}=(f_1,\ldots,f_r,f_{\mathbb{C}}).$

If $S \to C$ and $\nu_S \to \mu_C$ (plus technical assumptions), then

$$
f_S \approx L_1(S) f_1 + L_2(S) f_2 + \ldots L_r(S) f_r + f_c + o(1),
$$

where $L_j=\sum_{e\in \pi_j}|\log |t_e||.$ In particular $L_1(S)\gg \cdots \gg L_r(S)\to \infty.$

In particular, we obtain asymptotics for the Arakelov–Green function g_S on degenerating Riemann surfaces!

prior results: Wentworth (1991), de Jong (2019) and Faltings (2021)

Divisors and meromorphic functions on hybrid curves

Let C be a hybrid curve.

A **divisor** D on C is a finite integer combination of points on C.

A **meromorphic function** on $\mathcal C$ is a hybrid function $\mathbf f=(f_1,\ldots,f_r,f_{\mathbb C})$ s.t.

- $f_{\mathbb C} \colon \bigsqcup_{\mathsf v \in \mathsf V} \mathsf C_{\mathsf v} \to \mathbb C$ is meromorphic on each Riemann surface $\mathsf C_{\mathsf v}$
- for all $j=1,\ldots,r$, the function $f_j\colon\Gamma^j\to\mathbb{C}$ is meromorphic on $\Gamma^j,$ i.e. continuous, piecewise linear with integer slopes

Poincaré–Lelong formula on Riemann surfaces S :

 $div(f) = \Delta \varsigma(-\log|f|),$ f meromorphic on S.

The **principal divisor** of a meromorphic function f on C is

 $\mathrm{div}(\mathbf{f}) = \Delta_{\mathcal{C}}(f_1,\ldots,f_r,-\log|f_{\mathbb{C}}|) = \mathrm{div}_{\Gamma^1}(f_1)+\ldots\mathrm{div}_{\Gamma^r}(f_r)+\mathrm{div}_{\bigsqcup_v c_v}(f_{\mathbb{C}}).$

Theorem (Amini–N, $2024+$)

"Limits of principal divisors are hybrid principal divisors."

I.e., let $S \in \mathcal{M}_g$ equipped with a principal divisor $D_S \in Prin(S)$. Suppose S converges to a hybrid curve C and D_S converges to a divisor D_C on C.

Then, the limiting divisor D_C is **principal**.

For the corresponding meromorphic functions f_S on S and $f = (f_i)_i$ on C:

$$
|f_{\mathsf{S}}| = \lambda_1^{f_1+o(1)} \cdot \lambda_2^{f_2+o(1)} \cdot \lambda_r^{f_r+o(1)} \cdot |f_{\mathbb{C}}|(1+o(1)),
$$

where $\lambda_j = \prod_{e \in \pi_j} |t_e|$ for $j = 1, \ldots, r.$

(Here, f_S and **f** are chosen suitably normalized!!!):

Picard group and Jacobian of a hybrid curve

Definition

Let $\mathcal C$ be a hybrid curve. Define

 $\mathrm{Pic}(\mathcal{C}):=\mathsf{Div}^0(\mathcal{C})/\mathsf{Prin}(\mathcal{C})...$ Picard group (degree zero divisors modulo principal divisors) $Jac(C) := H_1(C, \mathbb{R})/H_1(C, \mathbb{Z})...$ Jacobian of C

• $Pic(\mathcal{C})$ and $Jac(\mathcal{C})$ are abelian groups endowed with filtrations:

$$
\text{Pic}(\mathcal{C}) = P^1 \supset P^2 \supset \dots P^r \supset P^c
$$

$$
\text{Jac}(\mathcal{C}) = J^1 \supset J^2 \supset \dots J^r \supset J_c
$$

 P^j , J^j ... "allow only points and cycles not touching edges in $\pi_1 \cup \dots \pi_{j-1}$ "

• Quotients are the Jacobians and Picard groups of graded minors: $P^j/P^{j+1} \cong Pic(\Gamma^j), \qquad J^j/J^{j+1} \cong Jac(\Gamma^j).$

Hybrid Abel–Jacobi map

Theorem $(Amini-N. 2024+)$

Let C be a hybrid curve.

We construct a natural Abel–Jacobi map

$$
AJ_{\mathcal{C}}: Pic(\mathcal{C}) \rightarrow Jac(\mathcal{C}),
$$

which is an isomorphism of abelian groups respecting the filtrations.

● The induced maps on quotients are the **Abel–Jacobi maps of** graded minors and Riemann surfaces of \mathcal{C} :

 $\mathrm{AJ}_\mathcal{C}\colon \mathsf{P}^j/\mathsf{P}^{j+1}\to \mathsf{J}^j/\mathsf{J}^{j+1}\quad \cong \quad \mathrm{AJ}_{\mathsf{F}^j}\colon \mathsf{Prin}(\mathsf{F}^j)\to \mathsf{Jac}(\mathsf{F}^j)$ $\mathrm{AJ}_\mathcal{C}\colon P^\mathbb{C}\to J^\mathbb{C} \quad\cong\quad \bigoplus \mathrm{AJ}_{\mathcal{C}_\mathsf{v}}\colon \bigoplus \mathrm{Prin}(\mathcal{C}_\mathsf{v})\to \bigoplus \mathrm{Jac}(\mathcal{C}_\mathsf{v})$ v v v

If $S \in \mathscr{M}_g$ converges to $\mathcal C$ in $\mathscr{M}_g^{\scriptscriptstyle\mathsf{hyb}}$, then the Abel–Jacobi map AJ_S on S converges to $AJ_{\mathcal{C}}$.

Relationship to compactifications of tropical moduli spaces

 $\mathscr{M}_{\mathsf{g}}^{{\scriptscriptstyle\mathsf{trop}}}$... moduli space of augmented genus $\mathsf g$ metric graph

Close to a stable RS S_∞ of graph G , there is a map $\psi\colon \mathscr{M}_\mathsf{g}\to \mathscr{M}_\mathsf{g}^{\sf trop}$:

If $S \to S_\infty$ in $\overline{\mathcal{M}}_{g}$, then $\ell(e) \to \infty$ for all $e \in E$ ("degenerating graphs")

 $\mathscr{M}_{\mathbf{\mathcal{g}}}^{\scriptscriptstyle\mathsf{hyb}}$ has an **analog compactification** of $\mathscr{M}_{\mathbf{\mathcal{g}}}^{\scriptscriptstyle\mathsf{trop}}!$ (using metric graphs with "ordered partition of edge set")

Theorem (Amini–N.; $24+$)

Suppose that a Riemann surface S degenerates to a hybrid curve \mathcal{C} . Let $Jac(S)$ be the polarized Jacobian of S, viewed as a Riemannian manifold.

Then, in the Gromov–Hausdorff sense and up to proper normalization,

- Jac(S) converges to the polarized graph Jacobian Jac(Γ_1)
- **•** The polarized graph Jacobians Jac(Γ_2), ..., Jac(Γ_r) and Riemann surface Jacobians Jac(C_v), $v \in V$, appear as limits of explicit subtori.