Hybrid curves and their moduli spaces

Noema Nicolussi

TU Graz

joint work with O. Amini (École polytechnique)

Topology and arithmetic on the moduli space of curves

16th May 2024

Hybrid curves

A hybrid curve ${\mathcal C}$ consists of

- a finite graph G = (V, E)
- for each vertex v: a compact **Riemann surface** C_v
- on each C_v , attachment points p_v^e , $e \sim v$, for interval edges
- an ordered partition $\pi = (\pi_1, \ldots, \pi_r)$ of the edge set *E*
- an edge length function $\ell \colon E \to (0,\infty)$ (with $\sum_{e \in \pi_i} \ell(e) = 1 \, \forall j$)

Hybrid curve = algebraic curve + tropical curve

$\overline{\mathscr{M}}_g$... Deligne–Mumford compactification of \mathscr{M}_g

Let X_S be an **interesting object** associated to Riemann surfaces $S \in \mathcal{M}_g$ (e.g., invariant, metric on S, solution to differential equation on S, ...)

Question

Suppose $S \in \mathcal{M}_g$ converges to a stable Riemann surface $S_{\infty} \in \overline{\mathcal{M}}_g \setminus \mathcal{M}_g$.

What happens to X_S ?

Ideally, one can extend X_S continuously to \mathcal{M}_g , i.e.

(*i*) define an analogous object $X_{S_{\infty}}$ on stable Riemann surfaces S_{∞} (*ii*) prove that $X_S \to X_{S_{\infty}}$ as $S \to S_{\infty}$

Sequences approaching a boundary point in $\bar{\mathcal{M}}_g$

Certain interesting objects X_S can't be extended continuously to $\overline{\mathcal{M}}_g$, since their limit depends on the "way of approaching S_{∞} "!

Canonical (a.k.a. Arakelov-Bergman) measure

 Ω ... space of holomorphic 1-forms ω on S, equipped with inner product

$$\langle \omega, \eta \rangle_{\mathcal{S}} = \frac{i}{2} \int_{\mathcal{S}} \omega \wedge \overline{\eta}, \qquad \omega, \eta \in \Omega.$$

Definition

Fix an ON-basis $(\omega_k)_k$ of Ω . The **canonical measure** μ_{can} on S is

$$\mu_{\mathcal{S}} := \frac{i}{2} \sum_{k=1}^{g} \omega_k \wedge \overline{\omega_k}.$$

Relationship to the polarized Jacobian

 μ_S is the Riemannian measure of the **canonical metric** φ_S on S:

- $\langle \cdot, \cdot \rangle_{S}$ induces a metric φ on Jacobian $\operatorname{Jac}(S) = \Omega^{*}/H_{1}(S,\mathbb{Z})$
- φ_S is the pull-back of φ via Abel–Jacobi map

$$AJ: S \hookrightarrow \mathsf{Jac}(S).$$

The canonical measure μ_S gives rise to other interesting objects:

• E.g., the Arakelov Green function $g_S \colon S \times S \to \mathbb{R}$ is the solution to the distributional Poisson equations

$$\frac{1}{\pi i}\partial_z \partial_{\bar{z}} g_S(x,\cdot) = \mu_S - g \cdot \delta_x, \qquad \int_S g_S(x,y) \, d\mu_S(y) = 0, \qquad x \in S.$$

E.g., interesting invariants of a Riemann surface
 δ-invariant: Faltings, Calculus on arithmetic surfaces, Ann. Math. (1984)

Many authors studied μ_S and related objects on degenerating RS's! However, they are examples of objects X_S , which cannot be extended continuously to $\overline{\mathcal{M}}_g$! Let S_{∞} be a stable Riemann surface with graph G = (V, E).

Degenerating Riemann surfaces

Constructing a "larger" compactifiation

Plan: find other compactification of $\mathcal{M}_g \Rightarrow$ moduli space of hybrid curves

To each hybrid curve C, one assigns a stable Riemann surface $S_{\infty}(C)$:

There are infinitely many hybrid curves for each stable RS $S_{\infty} \in \overline{\mathscr{M}}_g \setminus \mathscr{M}_g!$

Idea of construction:

"Replace each stable Riemann surface $S_{\infty} \in \overline{\mathscr{M}}_g \setminus \mathscr{M}_g$ by its infinitely many hybrid curves"

Definition

Let C be a hybrid curve with: underlying stable RS $S_{\infty}(C)$; ℓ edge length function; $\pi = (\pi_1, \dots, \pi_r)$ ordered partition;

A sequence $(S_n)_n \subset \mathscr{M}_g$ converges to \mathcal{C} if, as $n \to \infty$,

- (i) $(S_n)_n$ converges to $S_\infty(\mathcal{C})$ in $\overline{\mathcal{M}}_g$
- (ii) cycles for edges in π_j shrink "infinitely faster" than cycles of π_{j+1} ,

(iii) the "relative shrinking speed" of cycles for edges in the same set π_j is captured by the edge lengths.

(ii) More precisely: for all sets π_j in $\pi = (\pi_1, \ldots, \pi_r)$:

$$\frac{|\log |z_e(S_n)||}{|\log |z_{e'}(S_n)||} \to \infty \qquad e \in \pi_j, e' \in \pi_{j+1}.$$

(iii) More precisely: for all sets π_j in $\pi = (\pi_1, \ldots, \pi_r)$:

$$\frac{|\log |z_e(S_n)||}{|\log |z_{e'}(S_n)||} \to \frac{\ell(e)}{\ell(e')}, \qquad \text{for all } e, e' \in \pi_j.$$

Theorem (Amini-N; 2021)

The moduli space \mathscr{M}_{g}^{hyb} of hybrid curves of genus g compactifies \mathscr{M}_{g} . \mathscr{M}_{g}^{hyb} refines the DM-compactification $\overline{\mathscr{M}}_{g}$ in the sense that

$$\mathscr{M}_{g}^{\scriptscriptstyle \mathsf{nyb}} o \overline{\mathscr{M}}_{g}, \qquad \mathcal{C} \mapsto \mathcal{S}_{\infty}(\mathcal{C}),$$

is a continuous map.

Q: Understand objects X_S on degenerating Riemann surfaces *S*?

Strategy:

(*i*) define a suitable object X_C on hybrid curves C

(ii) prove that, as $S \to C$ in $\mathscr{M}_g^{_{hyb}}$, one can **describe** X_S **in terms of** X_C

We did this for a couple of interesting objects X_S .

Definition

A metric graph $\mathcal{G} = (V, E, \ell)$ is a (finite) graph $\mathcal{G} = (V, E)$ together with an edge length function $\ell \colon E \to (0, +\infty)$.

Canonical measure on metric graphs (Zhang; Invent. Math., '92)

Let $\mathcal{G} = (V, E, \ell)$ be a metric graph. Fix an orientation on the edge set E. • A harmonic one-form on \mathcal{G} is a map $\omega \colon E \to \mathbb{R}$ satisfying

$$\sum_{\text{incoming edges at } v} \omega(e) = \sum_{\text{outgoing edges at } v} \omega(e), \qquad v \in V.$$

• The space of harmonic one-forms $H^1(\mathcal{G})$ has the inner product

$$\langle \omega, \eta
angle_{\mathcal{G}} = \sum_{e \in E} \ell(e) \, \omega(e) \eta(e), \qquad \omega, \eta \in \mathcal{H}^1(\mathcal{G})$$

The **canonical measure** on \mathcal{G} is the edgewise weighted Lebesgue measure

$$\mu_{\mathcal{G}} := \sum_{e \in E} \mu_e \cdot \lambda_e$$

where λ_e is the Lebesgue measure on the interval edge $e = [0, \ell(e)]$ and

$$\mu_{e}=rac{1}{\ell(e)}\sum_{k}\omega_{k}(e)^{2}$$
, with $(\omega_{k})_{k}$ an ON-basis of $H^{1}(\mathcal{G}).$

Definition

For j = 1, ..., r, the *j*-th **graded minor** of C is the metric graph Γ_j with edge set π_j and length function $\ell|_{\pi_j}$ obtained by: (*) contracting all Riemann surface components C_v to points (*) removing all intervals for edges in $\pi_1 \cup \pi_2 \cup \cdots \cup \pi_{j-1}$ (*) contracting all intervals for edges in $\pi_{j+1} \cup \pi_{j+2} \cup \cdots \cup \pi_r$

Definition

Let \mathcal{C} be a hybrid curve. The **canonical measure** on \mathcal{C} is

$$\mu_{\mathcal{C}} := \sum_{\mathbf{v}\in\mathbf{V}}\mu_{\mathbf{C}_{\mathbf{v}}} + \sum_{j=1}^{r}\mu_{\mathbf{\Gamma}^{j}}.$$

(C_v 's... Riemann surface components of C; $\Gamma_1, \ldots, \Gamma_r$... graded minors)

Theorem (Amini-N., 2021)

Let $(S_n)_n \subset \mathscr{M}_g$ be a sequence of Riemann surfaces and \mathcal{C} a hybrid curve.

If $S_n \to \mathcal{C}$, then $\mu_{S_n} \to \mu_{\mathcal{C}}$ (in a weak sense).

Altogether, "canonical measures vary continuously" over \mathscr{M}_{g}^{hyb} .

Canonical metric on degenerating Riemann surfaces

 μ_S is the measure associated to the **canonical metric** φ_S on *S* If *S* converges to a hybrid curve, φ_S exhibits a **multi-scale degeneration**:

Here $L_j = \sum_{e \in \pi_j} |\log |t_e||$ and, in particular, $L_1 \gg L_2 \gg ... \gg Lr$ Note: this allows to "see the graded minors"!

Another perspective on hybrid curves

Actually, one should imagine a hybrid curve as a "multi-scale object", with pieces Γ_1 , Γ_2 , ..., Γ_r and $\bigsqcup_v C_v$:

- first graded minor $\Gamma_1 \rightarrow$ "dominant scale"
- \bullet second graded minor $\Gamma_2 \rightarrow$ "2nd dominant scale"
- ...
- Riemann surfaces $\bigsqcup_{v} C_{v} \rightarrow$ "constant order scale"

Let $S \in \mathcal{M}_g$ and ν_S a measure ν_S on S. Consider the **Poisson equation** $\Delta_S f = \nu_S, \qquad \Delta_S := \frac{1}{\pi i} \partial_z \partial_{\overline{z}}.$ **Q:** What happens to the **solution** f_S , when S degenerates?

Definition

C hybrid curve with graded minors $\Gamma_1, \ldots, \Gamma_r$ and RSs $C_v, v \in V$: A hybrid function on C is a tuple $\mathbf{f} = (f_1, \ldots, f_r, f_c)$, where

- for each $j = 1, \ldots, r$: $f_j \colon \Gamma^j \to \mathbb{C}$ is a function on Γ^j
- $f_{\mathbb{C}} \colon \bigsqcup_{v} C_{v} \to \mathbb{C}$ is a function on $\bigsqcup_{v} C_{v}$

We "mix Laplacians on Riemann surfaces / graphs" to define a Laplacian $\Delta_{\mathcal{C}}(\mathbf{f}) \in \{\nu | \nu \text{ Borel measure on } \mathcal{C}\}.$

E.g., for r = 1 (the trivial ordered partition $\pi = (E)$):

$$\Delta_{\mathcal{C}}(f_1, f_{\mathbb{C}}) := \sum_{e \in E} -(f_1|_e)'' \lambda_e + \sum_{v \in C_v} \Delta_{C_v}(f_{\mathbb{C}})|_{C_v} + \sum_{e \sim v} \partial_e f_1(v) \delta_{\rho_v^e}.$$

(Here: p_v^e , $e \sim v$ are the "attachment points" of intervals on C_v)

Theorem (Amini-N., 2022)

Let $S \in \mathcal{M}_g$ and $\Delta_S(f_S) = \nu_S$ a Poisson equation with solution f_S . Let C be a hybrid curve and $\Delta_C(\mathbf{f}) = \nu_C$ a Poisson equation on C with solution $\mathbf{f} = (f_1, \ldots, f_r, f_c)$.

If $S
ightarrow {\cal C}$ and $u_S
ightarrow \mu_{\cal C}$ (plus technical assumptions), then

$$f_S \approx L_1(S)f_1 + L_2(S)f_2 + \ldots L_r(S)f_r + f_{\mathbb{C}} + o(1),$$

where $L_j = \sum_{e \in \pi_j} |\log |t_e||$. In particular $L_1(S) \gg \cdots \gg L_r(S) \to \infty$.

In particular, we obtain asymptotics for the Arakelov–Green function g_S on degenerating Riemann surfaces!

prior results: Wentworth (1991), de Jong (2019) and Faltings (2021)

Divisors and meromorphic functions on hybrid curves

Let $\ensuremath{\mathcal{C}}$ be a hybrid curve.

A **divisor** D on C is a finite integer combination of points on C.

A meromorphic function on C is a hybrid function $\mathbf{f} = (f_1, \ldots, f_r, f_c)$ s.t.

- $f_{\mathbb{C}} \colon \bigsqcup_{v \in V} C_v \to \mathbb{C}$ is meromorphic on each Riemann surface C_v
- for all j = 1, ..., r, the function $f_j \colon \Gamma^j \to \mathbb{C}$ is meromorphic on Γ^j , i.e. continuous, piecewise linear with integer slopes

Poincaré–Lelong formula on Riemann surfaces *S*:

 $\operatorname{div}(f) = \Delta_{\mathcal{S}}(-\log |f|), \quad f \text{ meromorphic on } \mathcal{S}.$

The **principal divisor** of a meromorphic function \mathbf{f} on \mathcal{C} is

 $\operatorname{div}(\mathbf{f}) = \Delta_{\mathcal{C}}(f_1, \ldots, f_r, -\log |f_{\mathbb{C}}|) = \operatorname{div}_{\Gamma^1}(f_1) + \ldots \operatorname{div}_{\Gamma^r}(f_r) + \operatorname{div}_{\bigcup_{v} C_v}(f_{\mathbb{C}}).$

Theorem (Amini–N, 2024+)

"Limits of principal divisors are hybrid principal divisors."

I.e., let $S \in \mathcal{M}_g$ equipped with a principal divisor $D_S \in Prin(S)$. Suppose S converges to a hybrid curve C and D_S converges to a divisor D_C on C. Then, the limiting divisor D_C is **principal**.

For the corresponding meromorphic functions f_S on S and $\mathbf{f} = (f_j)_j$ on C:

$$|f_{\mathcal{S}}| = \lambda_1^{f_1+o(1)} \cdot \lambda_2^{f_2+o(1)} \cdot \lambda_r^{f_r+o(1)} \cdot |f_{\mathbb{C}}|(1+o(1)),$$

where $\lambda_j = \prod_{e \in \pi_i} |t_e|$ for $j = 1, \ldots, r$.

(Here, f_S and **f** are chosen suitably normalized!!!):

Picard group and Jacobian of a hybrid curve

Definition

Let $\ensuremath{\mathcal{C}}$ be a hybrid curve. Define

$$\begin{split} \operatorname{Pic}(\mathcal{C}) &:= \operatorname{Div}^0(\mathcal{C}) / \operatorname{Prin}(\mathcal{C}) ... \text{ Picard group} \\ & (\text{degree zero divisors modulo principal divisors}) \\ \operatorname{Jac}(\mathcal{C}) &:= H_1(\mathcal{C}, \mathbb{R}) / H_1(\mathcal{C}, \mathbb{Z}) ... \text{ Jacobian of } \mathcal{C} \end{split}$$

• $\operatorname{Pic}(\mathcal{C})$ and $\operatorname{Jac}(\mathcal{C})$ are **abelian groups** endowed with **filtrations**:

$$\operatorname{Pic}(\mathcal{C}) = P^{1} \supset P^{2} \supset \dots P^{r} \supset P^{c}$$
$$\operatorname{Jac}(\mathcal{C}) = J^{1} \supset J^{2} \supset \dots J^{r} \supset J_{c}$$

 P^{j} , J^{j} ... "allow only points and cycles not touching edges in $\pi_{1} \cup \ldots \pi_{j-1}$ "

• Quotients are the Jacobians and Picard groups of graded minors: $P^{j}/P^{j+1} \cong \operatorname{Pic}(\Gamma^{j}), \qquad J^{j}/J^{j+1} \cong \operatorname{Jac}(\Gamma^{j}).$

Hybrid Abel–Jacobi map

Theorem (Amini-N., 2024+)

Let $\ensuremath{\mathcal{C}}$ be a hybrid curve.

• We construct a natural Abel-Jacobi map

$$AJ_{\mathcal{C}}$$
: $Pic(\mathcal{C}) \rightarrow Jac(\mathcal{C}),$

which is an isomorphism of abelian groups respecting the filtrations.

• The induced maps on quotients are the Abel–Jacobi maps of graded minors and Riemann surfaces of C:

$$AJ_{\mathcal{C}} \colon P^{j}/P^{j+1} \to J^{j}/J^{j+1} \cong AJ_{\Gamma^{j}} \colon Prin(\Gamma^{j}) \to Jac(\Gamma^{j})$$
$$AJ_{\mathcal{C}} \colon P^{\mathbb{C}} \to J^{\mathbb{C}} \cong \bigoplus_{v} AJ_{\mathcal{C}_{v}} \colon \bigoplus_{v} Prin(\mathcal{C}_{v}) \to \bigoplus_{v} Jac(\mathcal{C}_{v})$$

• If $S \in \mathcal{M}_g$ converges to C in \mathcal{M}_g^{hyb} , then the Abel–Jacobi map AJ_S on S converges to AJ_C .

Relationship to compactifications of tropical moduli spaces

 \mathcal{M}_{g}^{trop} ... moduli space of augmented genus g metric graph

Close to a stable RS S_{∞} of graph G, there is a map $\psi \colon \mathscr{M}_g \to \mathscr{M}_g^{trop}$:

If $S \to S_\infty$ in $\overline{\mathscr{M}}_g$, then $\ell(e) \to \infty$ for all $e \in E$ ("degenerating graphs")

 \mathcal{M}_{g}^{hyb} has an **analog compactification** of \mathcal{M}_{g}^{trop} ! (using metric graphs with "ordered partition of edge set")

Noema Nicolussi

Theorem (Amini–N.; 24+)

Suppose that a Riemann surface S degenerates to a hybrid curve C. Let Jac(S) be the polarized Jacobian of S, viewed as a Riemannian manifold.

Then, in the Gromov-Hausdorff sense and up to proper normalization,

- Jac(S) converges to the polarized graph Jacobian Jac(Γ₁)
- The polarized graph Jacobians Jac(Γ₂),..., Jac(Γ_r) and Riemann surface Jacobians Jac(C_ν), ν ∈ V, appear as limits of explicit subtori.