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Hybrid curves

π2

π1

A hybrid curve C consists of

a finite graph G = (V ,E )

for each vertex v : a compact Riemann surface Cv

on each Cv , attachment points pev , e ∼ v , for interval edges

an ordered partition π = (π1, . . . , πr ) of the edge set E

an edge length function ` : E → (0,∞) (with
∑

e∈πj `(e) = 1 ∀j)

Hybrid curve = algebraic curve + tropical curve
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Motivation

Mg ... Deligne–Mumford compactification of Mg

Let XS be an interesting object associated to Riemann surfaces S ∈Mg

(e.g., invariant, metric on S , solution to differential equation on S , ...)

Question

Suppose S ∈Mg converges to a stable Riemann surface S∞ ∈Mg \Mg .

What happens to XS?

Ideally, one can extend XS continuously to Mg , i.e.

(i) define an analogous object XS∞ on stable Riemann surfaces S∞
(ii) prove that XS → XS∞ as S → S∞
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Sequences approaching a boundary point in Mg

Certain interesting objects XS can’t be extended continuously to Mg ,
since their limit depends on the “way of approaching S∞”!
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Canonical (a.k.a. Arakelov–Bergman) measure

Ω ... space of holomorphic 1-forms ω on S , equipped with inner product

〈ω, η〉S =
i

2

∫
S
ω ∧ η, ω, η ∈ Ω.

Definition

Fix an ON-basis (ωk)k of Ω. The canonical measure µcan on S is

µS :=
i

2

g∑
k=1

ωk ∧ ωk .

Relationship to the polarized Jacobian

µS is the Riemannian measure of the canonical metric ϕS on S :

〈·, ·〉S induces a metric ϕ on Jacobian Jac(S) = Ω∗/H1(S ,Z)

ϕS is the pull-back of ϕ via Abel–Jacobi map

AJ : S ↪→ Jac(S).
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Applications of the canonical measure

The canonical measure µS gives rise to other interesting objects:

E.g., the Arakelov Green function gS : S × S → R is the solution to
the distributional Poisson equations

1

πi
∂z∂z̄gS(x , ·) = µS − g · δx ,

∫
S
gS(x , y) dµS(y) = 0, x ∈ S .

E.g., interesting invariants of a Riemann surface

δ-invariant: Faltings, Calculus on arithmetic surfaces, Ann. Math. (1984)

Many authors studied µS and related objects on degenerating RS’s!

However, they are examples of objects XS , which cannot be extended
continuously to Mg !
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Stable Riemann surfaces

Let S∞ be a stable Riemann surface with graph G = (V ,E ).
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Degenerating Riemann surfaces

−−→

−−→
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Constructing a “larger” compactifiation

Plan: find other compactification of Mg ⇒ moduli space of hybrid curves

To each hybrid curve C, one assigns a stable Riemann surface S∞(C):

−−→

There are infinitely many hybrid curves for each stable RS S∞ ∈Mg \Mg !

Idea of construction:

“Replace each stable Riemann surface S∞ ∈Mg \Mg

by its infinitely many hybrid curves”
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Convergence of Riemann surfaces to hybrid curves

Definition

Let C be a hybrid curve with: underlying stable RS S∞(C);
` edge length function; π = (π1, . . . , πr ) ordered partition;

A sequence (Sn)n ⊂Mg converges to C if, as n→∞,

(i) (Sn)n converges to S∞(C) in M g

(ii) cycles for edges in πj shrink “infinitely faster” than cycles of πj+1,

(iii) the “relative shrinking speed” of cycles for edges in the same set πj is
captured by the edge lengths.

(ii) More precisely: for all sets πj in π = (π1, . . . , πr ):

| log |ze (Sn)||
| log |ze′ (Sn)|| → ∞ e ∈ πj , e

′ ∈ πj+1.

(iii) More precisely: for all sets πj in π = (π1, . . . , πr ):

| log |ze (Sn)||
| log |ze′ (Sn)|| →

`(e)
`(e′)

, for all e, e′ ∈ πj .
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The moduli space of hybrid curves

Theorem (Amini–N; 2021)

The moduli space M
hyb

g of hybrid curves of genus g compactifies Mg .

M
hyb

g refines the DM–compactification Mg in the sense that

M
hyb

g →Mg , C 7→ S∞(C),

is a continuous map.
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Applications

Q: Understand objects XS on degenerating Riemann surfaces S?

Strategy:
(i) define a suitable object XC on hybrid curves C
(ii) prove that, as S → C in M

hyb

g , one can describe XS in terms of XC

We did this for a couple of interesting objects XS .
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Metric graphs

Definition

A metric graph G = (V ,E , `) is a (finite) graph G = (V ,E ) together
with an edge length function ` : E → (0,+∞).

G = (V ,E ) G = (V ,E , `)

`(e) = 2

`(e) = 1
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Canonical measure on metric graphs (Zhang; Invent. Math.,’92)

Let G = (V ,E , `) be a metric graph. Fix an orientation on the edge set E .

A harmonic one-form on G is a map ω : E → R satisfying∑
incoming edges at v

ω(e) =
∑

outgoing edges at v

ω(e), v ∈ V .

The space of harmonic one-forms H1(G) has the inner product

〈ω, η〉G =
∑
e∈E

`(e)ω(e)η(e), ω, η ∈ H1(G).

The canonical measure on G is the edgewise weighted Lebesgue measure

µG :=
∑
e∈E

µe · λe

where λe is the Lebesgue measure on the interval edge e = [0, `(e)] and

µe = 1
`(e)

∑
k ωk(e)2, with (ωk)k an ON-basis of H1(G).
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Graded minors of a hybrid curve

Definition

For j = 1, . . . , r , the j-th graded minor of C is the metric graph Γj with
edge set πj and length function `|πj obtained by:
(*) contracting all Riemann surface components Cv to points
(*) removing all intervals for edges in π1 ∪ π2 ∪ · · · ∪ πj−1

(*) contracting all intervals for edges in πj+1 ∪ πj+2 ∪ · · · ∪ πr
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Hybrid canonical measure and convergence result

Definition

Let C be a hybrid curve. The canonical measure on C is

µC :=
∑

v∈V µCv +
∑r

j=1 µΓj .

(Cv ’s... Riemann surface components of C; Γ1, . . . Γr ... graded minors)

Theorem (Amini–N., 2021)

Let (Sn)n ⊂Mg be a sequence of Riemann surfaces and C a hybrid curve.

If Sn → C, then µSn → µC (in a weak sense).

Altogether, “canonical measures vary continuously” over M
hyb

g .
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Canonical metric on degenerating Riemann surfaces

µS is the measure associated to the canonical metric ϕS on S

If S converges to a hybrid curve, ϕS exhibits a multi-scale degeneration:

Here Lj =
∑

e∈πj | log |te || and, in particular, L1 � L2 � ...� Lr

Note: this allows to “see the graded minors”!
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Another perspective on hybrid curves

C

∞3

∞2

∞1

Actually, one should imagine a hybrid curve as a “multi-scale object”,

with pieces Γ1, Γ2, . . . , Γr and
⊔

v Cv :

first graded minor Γ1 → “dominant scale”

second graded minor Γ2 → “2nd dominant scale”

...

Riemann surfaces
⊔

v Cv → “constant order scale”
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Poisson equation on degenerating Riemann surfaces

Let S ∈Mg and νS a measure νS on S . Consider the Poisson equation

∆S f = νS , ∆S :=
1

πi
∂z∂z̄ .

Q: What happens to the solution fS , when S degenerates?

Noema Nicolussi 16th May 2024 18 / 24



Hybrid function and hybrid Laplacian

Definition

C hybrid curve with graded minors Γ1, . . . , Γr and RSs Cv , v ∈ V :
A hybrid function on C is a tuple f = (f1, . . . , fr , fC), where

for each j = 1, . . . , r : fj : Γj → C is a function on Γj

fC :
⊔

v Cv → C is a function on
⊔

v Cv

We “mix Laplacians on Riemann surfaces / graphs” to define a Laplacian

∆C(f) ∈ {ν| ν Borel measure on C}.

E.g., for r = 1 (the trivial ordered partition π = (E )):

∆C(f1, fC) :=
∑

e∈E −(f1|e)′′λe +
∑

v∈Cv
∆Cv (fC)|Cv +

∑
e∼v ∂e f1(v)δpev .

(Here: pev , e ∼ v are the “attachment points“ of intervals on Cv )
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Asymptotics of solutions to Poisson equation

Theorem (Amini–N., 2022)

Let S ∈Mg and ∆S(fS) = νS a Poisson equation with solution fS .
Let C be a hybrid curve and ∆C(f) = νC a Poisson equation on C with
solution f = (f1, . . . , fr , fC).

If S → C and νS → µC (plus technical assumptions), then

fS ≈ L1(S)f1 + L2(S)f2 + . . . Lr (S)fr + fC + o(1),

where Lj =
∑

e∈πj | log |te ||. In particular L1(S)� · · · � Lr (S)→∞.

In particular, we obtain asymptotics for the Arakelov–Green function
gS on degenerating Riemann surfaces!

prior results: Wentworth (1991), de Jong (2019) and Faltings (2021)
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Divisors and meromorphic functions on hybrid curves

Let C be a hybrid curve.

A divisor D on C is a finite integer combination of points on C.

A meromorphic function on C is a hybrid function f = (f1, . . . , fr , fC) s.t.

fC :
⊔

v∈V Cv → C is meromorphic on each Riemann surface Cv

for all j = 1, . . . , r , the function fj : Γj → C is meromorphic on Γj ,
i.e. continuous, piecewise linear with integer slopes

Poincaré–Lelong formula on Riemann surfaces S :

div(f ) = ∆S(− log |f |), f meromorphic on S .

The principal divisor of a meromorphic function f on C is

div(f) = ∆C(f1, . . . , fr ,− log |fC|) = divΓ1(f1) + . . . divΓr (fr ) + div⊔
v Cv

(fC).
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Hybrid meromorphic functions & principal divisors as limits

Theorem (Amini–N, 2024+)

“Limits of principal divisors are hybrid principal divisors.“

I.e., let S ∈Mg equipped with a principal divisor DS ∈ Prin(S). Suppose
S converges to a hybrid curve C and DS converges to a divisor DC on C.

Then, the limiting divisor DC is principal.

For the corresponding meromorphic functions fS on S and f = (fj)j on C:

|fS | = λ
f1+o(1)
1 · λf2+o(1)

2 · λfr+o(1)
r · |fC|(1 + o(1)),

where λj =
∏

e∈πj |te | for j = 1, . . . , r .

(Here, fS and f are chosen suitably normalized!!!):
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Picard group and Jacobian of a hybrid curve

Definition

Let C be a hybrid curve. Define

Pic(C) := Div0(C)/Prin(C)... Picard group

(degree zero divisors modulo principal divisors)

Jac(C) :=H1(C,R)/H1(C,Z)... Jacobian of C

Pic(C) and Jac(C) are abelian groups endowed with filtrations:

Pic(C) = P1 ⊃ P2 ⊃ . . .P r ⊃ PC

Jac(C) = J1 ⊃ J2 ⊃ . . . J r ⊃ JC

P j , J j ... “allow only points and cycles not touching edges in π1 ∪ . . . πj−1”

Quotients are the Jacobians and Picard groups of graded minors:

P j/P j+1 ∼= Pic(Γj), J j/J j+1 ∼= Jac(Γj).
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Hybrid Abel–Jacobi map

Theorem (Amini–N., 2024+)

Let C be a hybrid curve.

We construct a natural Abel–Jacobi map

AJC : Pic(C) → Jac(C),

which is an isomorphism of abelian groups respecting the filtrations.

The induced maps on quotients are the Abel–Jacobi maps of
graded minors and Riemann surfaces of C:

AJC : P j/P j+1 → J j/J j+1 ∼= AJΓj : Prin(Γj)→ Jac(Γj)

AJC : PC → JC ∼=
⊕
v

AJCv :
⊕
v

Prin(Cv )→
⊕
v

Jac(Cv )

If S ∈Mg converges to C in M
hyb

g , then the Abel–Jacobi map AJS on
S converges to AJC .
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Relationship to compactifications of tropical moduli spaces

M
trop

g ... moduli space of augmented genus g metric graph

Close to a stable RS S∞ of graph G , there is a map ψ : Mg →M
trop

g :

If S → S∞ in M g , then `(e)→∞ for all e ∈ E (”degenerating graphs”)

M
hyb

g has an analog compactification of M
trop

g !
(using metric graphs with “ordered partition of edge set”)
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Further results: geometry of hybrid curves

Theorem (Amini–N.; 24+)

Suppose that a Riemann surface S degenerates to a hybrid curve C. Let
Jac(S) be the polarized Jacobian of S , viewed as a Riemannian manifold.

Then, in the Gromov–Hausdorff sense and up to proper normalization,

Jac(S) converges to the polarized graph Jacobian Jac(Γ1)

The polarized graph Jacobians Jac(Γ2), . . . , Jac(Γr ) and Riemann
surface Jacobians Jac(Cv ), v ∈ V , appear as limits of explicit subtori.
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